GRADE XI

Mathematics

Model questions

विद्यार्थीले सकेसम्म आफ्नै शब्दमा उत्तर दिन्पर्नेछ । दायाँ किनारामा दिइएको अङ्कले पूर्णाङ्क जनाउँछ ।

Candidates are required to give their answers in their own words as far as practicable. The figures in the margin indicate full marks.

Time: 3 Hrs. Full Marks: 75

(d) Water is essential for health.

Attempt all the questions

Gro	oup A	$(1\times11=11)$			
Rev	write the correct option in your a	nswer sheet			
1.	Which of the following is a statement?				
	(a) The fishes are beautiful	(b) Study mathematics.			

2. The value of: $\sqrt{-16} \times \sqrt{-25}$ is

(a) -20 (b) -20i (c) 20i (d) 20

(c) x is a capital of country y.

- 3. If $\angle C = 60^{\circ}$, b = 5 cm and a = 4 cm of $\triangle ABC$, what is the value of c? (a) 3.58 cm (b) 4.58 cm (c) 4.89 cm (d) 4.56
- 4. In a triangle ABC, B = 120°, a = 1, c = 1 then the other angles and sides are

 (a) 35, 45, $\sqrt{2}$ (b) 10, 50, $\sqrt{3}$ (c) 20, 40,2 (d) 30, 30, $\sqrt{3}$
- 5. The cosine of the angle between the vectors $\vec{a} = \vec{i} 2\vec{j} + 3\vec{k}$ and $\vec{b} = \vec{i} + 3\vec{j} + 3\vec{k}$ is
 - (a) 14 (b) 14 (c) $\sqrt{14}$ (d) 196
- 6. The equation of parabola with the vertex at the origin and the directrix y 2 = 0 is..

 (a) $x^2 8y = 0$ (b) $y^2 + 8y = 0$ (c) $x^2 + 8y = 0$ (d) $y^2 8y = 0$
- 7. A mathematical problem is given to three students Sumit, Sujan and Rakesh whose chance of solving it are $\frac{1}{2}$, $\frac{1}{3}$ and $\frac{1}{a}$ respectively. The probability that the problem is solved is $\frac{3}{4}$? The possible values of a are

(a) $\frac{9}{2}$ (b) 4 (c) $\frac{1}{4}$ (d) $\frac{1}{8}$

- 8. $\lim_{\theta \to 0} \frac{\sin \theta}{\theta}$ is equal to

 (a) 0 (b) ∞ (c) 1 (d) $\frac{0}{0}$
- 9. The derivatives of $\frac{4x^2+3}{3x^2-2}$ is....

$\frac{-34x}{(-3-x)^2}$	202	$\frac{-32x}{(-2-x)^3}$	21
(a) $(3x^2-2)^2$	(b) $\frac{30x^2}{3x^2-2}$	(c) $(3x^2-2)^3$	(d) $\frac{-31x}{(3x-2)^2}$
By Newton's F	Raphson, the positive	e root of x^3 -18 = 0 in	(2, 3) is
(a) 2. 666	(b) 2.621	(c) 2.620	(d) 2.622

- 11. Two forces acting at an angle of 45° have a resultant equal to $\sqrt{10}N$, if one of the forces be $\sqrt{2}N$, what is the other force.
 - (a) 1N (b) 2N (c) 3N (d) 4N OR

The total cost function of a producer is given as $C = 500 + 30Q + \frac{1}{2}Q^2$. What is the marginal cost (MC) at Q = 4 is

(a) Rs.38 (b) Rs.34 (c) Rs.30 (d) Rs.28 Group B $(5 \times 8 = 40)$

- 12. A function $f(x) = x^2$ is given. Answer the following question for the function f(x).
 - (i) What is the algebraic nature of the function?
 - (ii) Write the name of the locus of the curve.
 - (iii) Write the vertex of the function.

10.

- (iv) Write any one property for sketching the curve.
- (v) Write the domain of the function.
- 13. Compare the sum of n terms of the series: $1 + 2a + 3a^2 + 4a^3 + \dots$ and $a + 2a + 3a + 4a \dots$ up to n terms.
- 14. a) In any triangle, prove that: $(b + c) \sin \frac{A}{2} = a \sin(\frac{A}{2} + B)$ (3)
 - b) Express $\vec{r} = (4, 7)$ as the linear combination of $\vec{a} = (5, -4)$ and $\vec{b} = (-2, 5)$ (2)
- 15. Calculate the appropriate measure of Skewness for the data below.

Class	0-10	10-20	20-30	30-40	40-50	50-60
No of workers	10	12	25	35	40	50

16. Define different types of discontinuity of a function. Also write the condition for increasing, decreasing and concavity of function. (2+3)

17. Evaluate:
$$\int \frac{x^2 dx}{\sqrt{a^2 - x^2}}$$

- 18. Define Trapezoidal rule. Evaluate using Trapezoidal rule for $\int_{0}^{1} \frac{dx}{1+x}$ n = 4.
- 19. State sine law and use it to prove Lami's theorem.

OR

A decline in the price of good X by Rs. 5 causes an increase in its demand by 20 units to 50 units. The new price is X is 15.

- (i) Calculate elasticity of demand.
- (ii) The elasticity of demand is negative, what does it mean?

$$Group - C (8 \times 3 = 24)$$

- 20. (a) The factor of expression ω^3 -1 are ω -1 and $\omega^2 + \omega + 1$. If ω^3 -1 = 0
 - (i) Find the possible values of ω and write the real and imaginary roots of ω . (2)
 - (ii) Prove that: $\begin{vmatrix} 1 & \omega^n & \omega^{2n} \\ \omega^{2n} & 1 & \omega^n \\ \omega^n & \omega^{2n} & 1 \end{vmatrix} = 0. \text{ Where n is positive integer.}$ (4)
 - (b) Verify that: $|x + y| \le |x| + |y|$ with x = 2 and y = -3
- 21. (a) The single equation of pair of lines is $2x^2 + 3xy + y^2 + 5x + 2y 3 = 0$
 - (i) Find the equation of pair straight lines represented by the single equation. (4)
 - (ii) Are the pair of lines represented by the given equation passes through origin? Write with reason. (1)
 - (iii) Find the point of intersection of the pair of lines. (2)
 - (b) If three vectors \vec{a} , \vec{b} and \vec{c} are mutually perpendicular unit vectors in space then write a relation between them. (1)
- 22. (i) Distinguish between derivative and anti-derivative of a function. Write their physical meanings and illustrate with example in your context. Find, the differential coefficient of logSinx with respect to x. (1+2+2)
 - (ii) Find the area bounded by the y axis, the curve $x^2 = 4$ (y 2) and the line y = 11.

(3)